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Understanding the fundamental principles of virus architecture is one of the

most important challenges in biology and medicine. Crick and Watson were the

first to propose that viruses exhibit symmetry in the organization of their protein

containers for reasons of genetic economy. Based on this, Caspar and Klug

introduced quasi-equivalence theory to predict the relative locations of the coat

proteins within these containers and classified virus structure in terms of

T-numbers. Here it is shown that quasi-equivalence is part of a wider set of

structural constraints on virus structure. These constraints can be formulated

using an extension of the underlying symmetry group and this is demonstrated

with a number of case studies. This new concept in virus biology provides for the

first time predictive information on the structural constraints on coat protein

and genome topography, and reveals a previously unrecognized structural

interdependence of the shapes and sizes of different viral components. It opens

up the possibility of distinguishing the structures of different viruses with the

same T-number, suggesting a refined viral structure classification scheme. It can

moreover be used as a basis for models of virus function, e.g. to characterize the

start and end configurations of a structural transition important for infection.

1. Introduction

Viruses are striking examples of order at the nanoscale. In

many viruses the protein-based containers that package

their genomic nucleic acids exhibit icosahedral symmetry

(see Fig. 1a). As Crick & Watson (1956) argued, this is

for reasons of genetic economy, because viral capsids with

this symmetry can be formed from the maximal possible

number of coat protein subunits for the least genetic infor-

mation, hence providing the largest genome packaging

volume. The first mathematical models of virus structure used

this fact to represent viral capsids via icosahedrally symmetric

surface lattices or tilings. In particular, Caspar and Klug

showed that the positions and relative orientations of the

capsid proteins of most viruses follow triangulations of an

icosahedral surface (Caspar & Klug, 1962; Coxeter, 1972) such

as the one shown in Fig. 1(b). These triangulation-based

models apply for scenarios in which the proteins are organized

in quasi-equivalent local environments, i.e. for the cases in

which the local bonding environments of the capsid proteins

are similar. An extension of Caspar–Klug theory has been

formulated for the non-quasi-equivalent cases, using tessella-

tions in terms of different types of shapes to model the

different types of local bonding environments. For example,

the tiling in Twarock (2004) represents the protein organiza-

tion in the capsids of the cancer-causing polyomaviridae via

two different shapes, a rhomb and a kite, representing the

dimer (respectively, trimer) interactions between capsid

proteins.

A common property of these approaches is the fact that,

being based on surface lattices, they do not provide any radial

information that could account for, e.g., the thickness of the

capsid or details of the capsid proteins other than their relative

positions and orientations. Moreover, they provide no infor-

mation on features of the organization of the packaged

genomes. The latter is of particular interest as many viruses

exhibit ordered features in their genomes in structures

determined at moderate resolution (van den Worm et al.,

2006).

Striking examples of this are the dodecahedral cage of

dsRNA seen in Pariacoto virus (PaV) (Tang et al., 2001) and

the double-shell architecture of the viral RNA observed in

bacteriophage MS2 (Toropova et al., 2008). These results

suggest that there are further constraints on the three-

dimensional structures of these highly ordered capsids and

genomes, i.e. that there should exist a wider set of constraints

on virus architecture than those formulated in Caspar–Klug

theory and viral tiling theory.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx5023&bbid=BB46
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767312047150&domain=pdf&date_stamp=2013-01-08


These theories demonstrate that important information on

the structural organization of viruses can be derived from

geometric considerations alone. This does not mean that the

physical and chemical principles underlying virus structures

are not important, but it does suggest that there is a strong

geometric constraint on the ways in which these principles

can manifest themselves on a structural level. This view is

supported further by the observation that there are only a

limited number of different capsid protein folds (Bamford

et al., 2005), which occur repeatedly across different viral

families with a surprising lack of any statistically significant

amino-acid-sequence similarity. This suggests that there

should be strong geometric constraints on the evolution of

capsid protein geometry that should be classifiable using

geometric tools.

Janner has explored the use of lattices to explain features of

the three-dimensional geometry and genome organization in

viruses. In a series of papers (Janner, 2010a,b, 2011a,b,c) he

has shown that encasing forms can be constructed for viral

components at different radial levels by embedding virus

structure into lattices. This approach is by construction

descriptive as it is not a priori clear which subset of a lattice is

important for a virus of interest, and the fitting has been

carried out via visual inspection, allowing for the conclusion

that the model is a good approximation, without being able to

quantify this further.

Here we introduce a method that focuses on the symmetry

group of the underlying lattice. Indeed, as lattices with

icosahedral symmetry do not exist in three dimensions due to

the crystallographic restriction (Scherrer, 1946), we work with

quasi-lattices, i.e. structures with long-range order lacking

periodicity. Such structures are known to occur in physics in

the form of quasicrystals, alloys with atomic positions orga-

nized according to quasi-lattices (de Bruijn, 1981a,b; Senechal,

1996). In this paper, we consider Janner’s lattices as approx-

imations of quasi-lattices with icosahedral symmetry. Finite

subsets of the vertex sets of such quasi-lattices can be

constructed iteratively from affine extensions of the icosa-

hedral group as we demonstrate in the next section. Since

viruses are finite objects, we use these finite point arrays as

discrete models for virus structure. Figs. 1(c) and 1(d)

demonstrate how such point arrays relate to surface tessella-

tions in Caspar–Klug theory and viral tiling theory. Indeed, the

vertices of the triangulation in Fig. 1(b) form a subset of the

vertices of the three-coloured icosahedra in Fig. 1(c), which

are related to each other via generators of an affine extension

of the icosahedral group. By considering all vertices of these

translated and rotated copies, as shown in Fig. 1(d), correlated

structural constraints at different radial levels are obtained.

Fig. 1 shows one example of a point array encoding the action

of an affine-extended symmetry group. According to the

classification in Wardman (2012), there exists a finite set of

such structures, the library of point arrays. We introduce here

a best-fit algorithm that compares all structures in this library

against structural data provided in the form of a PDB file and

demonstrate the predictive power of our method for a number

of viruses. The implication of this study is that icosahedral

symmetry and quasi-equivalence are part of a wider set of

structural constraints on virus structures.

2. Three-dimensional constraints on virus architecture
from affine-extended symmetry groups

The surface lattices and tilings in Caspar–Klug and viral tiling

theory can be viewed as subsets of spatially extended struc-

tures in three dimensions, as illustrated for the icosahedral

triangulation (a T ¼ 4 structure in the Caspar–Klug classifi-

cation) in Fig. 1. In this section, we discuss how point arrays

such as that in Fig. 1(d) can be systematically constructed

from affine extensions of the icosahedral group. For this, note

that point arrays obtained via affine extensions of non-

crystallographic groups form subsets of the vertex sets of

quasi-lattices. We demonstrate this in Fig. 2 for a planar

symmetry group, as graphical representation is simpler in this

case (see also supplementary movie 1).1 In this figure, we
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Figure 1
Quasi-equivalence is part of a wider set of structural constraints on virus
architecture. (a) A large number of viruses exhibit icosahedral symmetry
in the organization of their protein containers, i.e. they share a set of five-,
three- and twofold axes with an icosahedron. Here, four example
symmetry axes are shown on a viral protein container. (b) The T ¼ 4
surface lattice from quasi-equivalence theory that encodes the protein
organizations in capsids composed of 240 coat proteins. (c), (d) A packing
of overlapping icosahedra generates a partition of the icosahedral face
akin to the T ¼ 4 structure: (c) shows three of the 60 translated and
rotated icosahedra as solids; (d) shows the edges of these icosahedra,
together with the vertices of all 60 icosahedra. This is an example of the
structural constraints implied by our theory.

1 Supplementary movies are available from the IUCr electronic archives
(Reference: WX5023). Services for accessing these movies are described at the
back of the journal.



consider the rotational symmetry group of a decagon. Via an

affine extension of this group by the translation mapping the

black onto the blue decagon in Fig. 2(b), and subsequent

application of all rotational symmetries in Fig. 2(c), one

obtains the point array in Fig. 2(d) that forms a subset of the

vertex set of a tiling. This tiling has been obtained via the

projection method (Kramer & Shlottmann, 1989) from a five-

dimensional lattice with decagonal symmetry. Fig. 2(e)

demonstrates that iterating the action of the translation

operation further, again with subsequent application of the

rotational symmetries, results in a larger point array that

contains in addition the vertices shown in red in Fig. 2(e). With

increasingly higher iterations, the point array would become

denser and more extended in space. Since viruses are finite

objects, we therefore use a cutoff in the number of iterations

employed. For smaller viruses (i.e. viruses up to T ¼ 4 in the

Caspar–Klug classification), this is typically after the first

iteration step.

This example demonstrates how point arrays constructed

via an affine extension of a symmetry group relate to the

vertex sets of tilings obtained via the projection method. Note

that the geometry of the shape representing the symmetry

group (here the decagon as a geometrical representation of

decagonal symmetry) is related to the basis of the higher-

dimensional lattice from which the tiling is obtained via

projection. In the case of icosahedral symmetry, the minimal

dimension (minimal embedding dimension) in which a lattice

with icosahedral symmetry exists is six dimensional. In order

to construct all affine extensions of the

icosahedral group that can give rise to

vertex sets of quasi-lattices in this way,

one therefore needs to apply the

procedure to the projections of all six-

dimensional Bravais-lattice types with

icosahedral symmetry. There are three

such lattice types: the simple cubic (s.c.),

the face-centred cubic (f.c.c.) and the

body-centred cubic (b.c.c.) lattice.

According to Table 1 in Indelicato,

Cermelli et al. (2012), the projections of

their basis vectors into one of the two

three-dimensional subspaces invariant

under the icosahedral group correspond

to an icosahedron (vertices on the five-

fold axes of icosahedral symmetry), an

icosidodecahedron (vertices on the

twofolds) and a dodecahedron (vertices

on the threefolds). The construction and

classification of affine extensions of the

icosahedral group have therefore been

based on these polyhedra (Keef &

Twarock, 2009; Wardman, 2012). In

particular, each of the three polyhedra

is used as a start configuration in the

terminology of that paper, i.e. as the

shape representing the symmetry group

from which all translations extending

the icosahedral group are determined as those operations that

result in the translated and rotated copies sharing vertices.

From a group-theoretical point of view, this implies that the

resulting affine extensions have non-trivial group relations (i.e.

do not correspond to the free group). This is because vertices

correspond to words in the group generators in this context,

and coinciding vertices hence define non-trivial relations

between words of generators. The result of the classification,

adapted from Keef & Twarock (2009) and Wardman (2012), is

given in Table 1.

As described in these references, since start configurations

are auxiliary objects containing information regarding the six-

dimensional basis from which they have been obtained via

projection, two start configurations, and hence also their point

arrays, can be combined provided that they have been derived

via the same translation operation. In particular, the entries in

the table are given for start configurations normalized as

follows: vectors pointing to the vertices of the icosahedral,

dodecahedral and icosidodecahedral (IDD in Table 1) start

configurations have length ð2þ �Þ1=2, 31=2 and �, respectively,

where � ¼ ð1þ 51=2Þ=2 ’ 1:618. Moreover, translation lengths

along a fivefold (T5), threefold (T3) and twofold (T2) direction

are indicated in multiples of vectors of length ð2þ �Þ1=2, 31=2

and �, respectively.

Since start configurations and their associated translations

scale simultaneously (as only their relative sizes matter in the

construction of the affine extensions), it is possible to rescale

the entries for different start configurations in the table such
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Figure 2
The geometric principle can be encoded in a tiling. The figure demonstrates the relation of extended
symmetry groups with tilings. For simplicity, the principle is demonstrated for the two-dimensional
case of tenfold symmetry; the same principle has been applied to icosahedral symmetry in three
dimensions and has resulted in the library of point arrays used here (Keef & Twarock, 2009;
Wardman, 2012). (a) A decagon, a geometric representation of tenfold symmetry, superimposed on
a Penrose-type tiling such that its corners coincide with vertices of the tiling. (b) Addition of a
translation to the rotational symmetries of the decagon (i.e. an affine extension of tenfold rotational
symmetry) results in translated copies of the decagon (shown in blue) with corners also coinciding
with vertices of the tiling. (c) Subsequent rotations about the tenfold axis at the centre of the
original decagon result in ten copies of the translated decagon. (d) Since corner points of the
decagon are geometric representations of the (rotational) symmetries, the (artificial) decagonal
edges are faded away. An iterative process of translation and rotation leads to the addition of
further points. For example, in the second iteration step the red points in (e) are added and more
vertices of the tiling are covered.



that their translation lengths match. This results in 569 pair-

ings of start configurations and we call the associated point

arrays the library of point arrays. It would potentially be

possible to pair more than two entries in this way; however,

this would lead to increasingly extended and dense arrays

similar to those obtained via higher iterations of the symmetry

group. These may be relevant for larger viruses, but for smaller

viruses (T ¼ 1 to T ¼ 7 in the Caspar–Klug nomenclature)

these would be too dense. In the following, we will demon-

strate that this library of point arrays provides information on

the structures of a wide range of simple viruses covering all

T-numbers up to T ¼ 7.

3. The best-fit algorithm

The affine extension procedure has resulted in a finite library

of point arrays with the property that the points of each

individual array are related to each other by elements of an

affine-extended icosahedral group (see also supplementary

movie 2). This interdependence of points in any given array

makes it possible to use these arrays as predictive tools:

by designing a best-fit algorithm that selects a point array in

the library based on the fit of a subset of its points (e.g. the

exterior points) to part of the virus (e.g. the capsid), the

remaining points of the array (e.g. points at radial distances

overlapping with the interior of the capsid) can then be used

to infer information regarding the organization of other

components of the virus (e.g. the genome). This is of particular

interest as some structural information can be more easily

obtained at higher resolution than other information with

current experimental capabilities. Indeed, whilst capsid

structure determination by crystallography or cryo-electron

microscopy (cryo-EM) typically achieves high resolutions,

cryo-EM data regarding genome organization are currently

limited to about 8 Å resolution. Therefore, we have designed

the best-fit algorithm to select the best-fit point array(s) for

any given virus based on the PDB file of the viral capsid

(coordinates of the atomic positions of the capsid proteins),

which is readily available for a large number of viruses, e.g.

from VIPER (Carrillo-Tripp et al., 2009). We then infer

information regarding genome organization within the capsid

from the points in the best-fit array overlapping with the

interior of the capsid.

In this section, we provide details of the best-fit algorithm.

In particular, the following outlines the procedure according

to which the best-fit algorithm determines which point array

(best-fit point array) in the library best describes the surface

structure and topography of a virus based on its PDB file:

(a) Sample preparation. The coordinates of the test viral

proteins in the fundamental domain of the icosahedral group

(also called asymmetric unit in the biological literature) are

retrieved from a PDB data bank and icosahedral symmetry

operations used to generate the entire capsid. The proteins are

then represented by spheres of radius 1.9 Å around each

atomic position, which corresponds to the maximal van der

Waals radius of all atoms in the PDB file, calculated using

CHARMM (Brooks et al., 2009).

(b) Alignment and scaling. Our classification contains 569

point arrays. These are aligned with the modelled viral surface

via their common symmetry axes. In order to scale each array

to the test virus, the smallest possible scaling of the point array

is determined such that the modelled capsid surface is entirely

contained in the convex hull of the array.

(c) Sifting. The aligned and scaled point arrays contain

points at different radial levels. For some arrays which are not

good representations of the viral architecture, some of these

points will fall within the van der Waals radius of protein

atoms; we exclude all such point arrays from further consid-

eration.

(d) Goodness of fit. In order to quantify the goodness of fit

of these arrays to the protein container, two values are

calculated: a root-mean-square deviation (RMSD) score

SRMSD and a topography score STop. These measure how well

the points in an array match the van der Waals radii of the

atoms in the capsid proteins (SRMSD) and how well they

represent the overall surface topography of the virus (STop). In

order to reduce computational complexity, we only consider a

single asymmetric unit with its neighbouring proteins in this

calculation and truncate all point arrays to the same copy of

the asymmetric unit.

(d1) RMSD score SRMSD. The RMSD score examines the

closeness of the fit of the point array around capsid proteins.

Therefore, only points encompassing the volume occupied by

the capsid proteins are considered for this analysis. In order to
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Table 1
The cardinalities of the sets for the 55 extended symmetry systems
calculated in Wardman (2012).

Icosahedron Dodecahedron IDD

Translation Size Translation Size Translation Size

ð�1þ �ÞT5 116 ð2� �ÞT5 200 1
2 ð�1þ �ÞT5 290

T5 85 ð�1þ �ÞT5 172 1
2 T5 242

�T5 116 T5 172 1
2 �T5 242

�T5 200 T5 360
1
2 ð1þ �ÞT5 290

�T5 360

ð�1þ �ÞT3 192 ð2� �ÞT3 360 1
2 ð�1þ �ÞT3 510

T3 164 ð�1þ �ÞT3 252 1
2 T3 362

�T3 164 T3 191 1
2 �T3 374

ð1þ �ÞT3 192 �T3 252 T3 600

ð1þ �ÞT3 360 1
2 ð1þ �ÞT3 362

�T3 570
1
2 ð1þ 2�ÞT3 510

ð1þ �ÞT3 600

ð�1þ �ÞT2 342 ð2� �ÞT2 590 1
2 ð�1þ �ÞT2 870

2ð2� �ÞT2 272 2ð�3þ 2�ÞT2 500 ð2� �ÞT2 710

T2 342 ð�1þ �ÞT2 560 1
2 T2 870

2ð�1þ �ÞT2 212 2ð2� �ÞT2 332 ð�1þ �ÞT2 552

2T2 212 T2 590 1
2 �T2 870

2�T2 272 2ð�1þ �ÞT2 344 T2 361

2T2 332 2ð�1þ �ÞT2 870

2�T2 500 �T2 552

2T2 840

ð1þ �ÞT2 710

2�T2 870



ensure that all features of the inner surface are represented,

we apply an (arbitrary) cutoff to include only the points with

radii within 4 Å from the inner capsid surface and above. Since

some of these points may be located between different capsid

proteins, we compute the distances of each such point from the

van der Waals radii of all protein atoms in its vicinity. For all T

(as in T-number in the Caspar–Klug classification) different

quasi-equivalent conformers and all points i (i ¼ 1; . . . ;M) in

the asymmetric unit under consideration, the minimal

distances Ri;j ( j ¼ 1; . . . ;T) are determined. The RMSD score

is then computed over all N points in the asymmetric unit as

follows:

SRMSD ¼

PN
i¼1 mi

PKi

s¼1 R2
i;s

� �
PN

i¼1 miKi

" #1=2

: ð1Þ

Here, mi denotes the multiplicity with which each point i

occurs in the point array after application of icosahedral

symmetry and, for each point i, Ki � T denotes the number of

distances Ri;s (s ¼ 1; . . . ;Ki) that are smaller than or equal to

an arbitrarily chosen cutoff of 2 Å. The latter is due to the fact

that such points are likely to be located on boundaries of

adjacent capsid proteins, and we therefore consider their fit to

all these capsid proteins in the formula.

(d2) Topography score STop. The topography score deter-

mines which point array best matches the overall surface

topography of the virus. To generate a quantitative score, we

have used a clustering algorithm that approximates these

external features as follows: we locate the most radially distal

5% (by distance) of C� atoms in the viral capsid. These are

then clustered using the hclust algorithm in R (R Develop-

ment Core Team, 2008) with a cutree height threshold of 20 Å.

The mean of all atoms within each cluster is then calculated

and scaled to the outermost surface. The shortest distance of

this mean (e.g. the midpoint of the towers in PaV, see Fig. 4)

from any point in the array yields the topography score that

measures how well external features of the virus are captured

in our coarse-grained surface representation.

(d3) Combined score. The combined score Scom ¼

ðS2
RMSD þ S2

TopÞ
1=2 simultaneously optimizes the two indepen-

dent values SRMSD and STop, and the point array with the

lowest combined score is considered the best match for the

test virus.

(e) Evaluation of scores. The values for the viruses

considered in this paper are listed in Table 2. Note that since

we are not comparing like with like, but the fit of the point sets

around a surface, the RMSD scores are higher than in crys-

tallographic studies. Therefore, their relative, rather than

absolute, values are important here. Only points of the best-fit

array within the volume encompassing the viral proteins are

used for calculating Scom. Any inferences regarding points

overlapping with the area occupied by the viral genome are

hence predictions of this approach. For example, the vertices

in the minor grooves of the dodecahedral cage in PaV or those

encasing the two-shell RNA architecture in MS2 are predic-

tions of this algorithm.

(f) Remarks regarding robustness of the algorithm. Data

from PDB files indicate atomic positions only up to a certain

resolution and it is therefore important to ensure that the

best-fit array is not an artefact of this intrinsic uncertainty. For

this, the algorithm monitors robustness of the best-fit array

against small incremental rescalings of the PDB data with

respect to the array. The prevalence score measures for how

many rescalings, each moving point in increments of 0.1 Å, the

best-fit point array prevails as optimal fit. All best-fit arrays

determined for the applications presented here have preva-

lence scores of at least 4 and hence perform positively with

respect to this test.

Finally, note that array points are not one-to-one with

atomic positions of capsid protein or the packaged genomes,

i.e. the RNA molecules in the cases discussed here. Rather,

they are mapping onto material boundaries, which correspond

to the surface representations that can be obtained from the

atomic positions, e.g. via the software package PyMol (http://

www.pymol.org/). Therefore, proximity of array points to

material boundaries is computed using the RMSD to atoms

in the surface; arrays with points within material are not

considered a good fit to the structure and are hence excluded

from the procedure that determines the best-fit point array.

The reasons for this are twofold. First, point arrays are much

too sparse to account for all atomic positions. Second, this

choice is inspired by Janner’s work, which uses lattice tech-

niques to model material boundaries in viruses. Our approach

is a natural extension of this, but uses quasi-lattices as opposed

to lattices, and provides a library of finite point arrays which

are subsets of quasi-lattices and describe the structure of the

virus as a whole. As a result of our procedure, the best-fit

algorithm selects that point array from among the 569 that

best represents the material boundaries of the capsid in this

sense.

4. Applications to test cases

Viruses with the same number of capsid proteins are described

by the same element in the Caspar–Klug classification (same

T-number). We therefore analyse here two viruses of the same
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Table 2
The RMSD score, topography score and combined score in Å for the test
viruses discussed in this paper.

TNV is tobacco necrosis virus; DYMV is desmodium yellow mottle virus.

RMSD score Topography score Combined score
Virus name (SRMSD) (STop) (Scom)

MS2 2.53 5.83 6.35
Pariacoto 4.7 0.89 4.78
SV40 1.48 2.39 2.81
GA 2.17 4.24 4.76
Hepatitis B 4.06 1.62 4.38
TBSV 1.92 5.92 6.23
CCMV 0.94 6.97 7.04
CCMV swollen 2.17 3.93 4.48
STMV 1.19 2.78 3.02
TNV 4.63 12.64 13.46
DYMV 1.25 1.37 1.85



T-number (Pariacoto virus and bacteriophage MS2, both

T ¼ 3) to demonstrate that our procedure provides additional

information that distinguishes between their structures.

The best-fit algorithm uses as input only those points in each

of the 569 arrays that overlap with the capsid and selects the

best-fit point array on that basis. However, from a mathema-

tical point of view, all points in the array are collectively

determined by an application of symmetry generators. It is

therefore not possible to ignore any array points in the

mathematical structure and the entire point array implies

constraints on the structure of the virus. In particular, the

array points of the best-fit array that have not been used as

input for the best-fit algorithm provide a prediction for

genome organization, as illustrated schematically in Fig. 3.

4.1. Pariacoto virus (PaV)

We first examine PaV (Tang et al., 2001), a T ¼ 3 virus that

infects insects. The PaV capsid is formed from 180 identical

coat proteins clustered as 60 trimers. As well as revealing the

structure of the protein shell, the X-ray crystal structure shows

that �35% of the genomic RNA is also icosahedrally ordered.

This portion of the genome has been modelled as a dodeca-

hedral cage of A-type duplexes that meet at three-way

junctions. Quasi-equivalence theory precisely predicts the

positions of the three distinct conformers required to build the

T ¼ 3 PaV capsid. However, since it only deals with the

positions of proteins within the surface (two-dimensional)

lattice that tessellates a sphere, it makes no predictions about

the topography of those virus coat protein conformers, or

about the position of the genomic RNA with respect to the

overlying protein shell. For particles with extended symmetry,

however, the positions and shapes of all viral components

must be correlated.

Fig. 4(a) shows the structure of the PaV protein shell viewed

from the outside, with an icosahedron superimposed to high-

light the local symmetry of the protein lattice. The match to

symmetry elements such as the two-, three- and fivefold axes

in this case is obvious. Extended symmetries are characterized

by arrays of points in three dimensions that are both difficult

to visualize and whose locations are non-intuitive (Fig. 4b).

The best-fit algorithm scans the library of point arrays by

scaling them and localizing these points to defined positions

relative to the PaV structure. In this case a clear best match

was found between the most radially extended points of one

array and the tops of the trimeric protein spikes (see supple-

mentary movies 2 and 3). These matches are highlighted in

Fig. 4(a). Note that they do not lie on a global symmetry axis

of the icosahedron, implying that the array library contains

information about protein topography as well as geometry.

These external scaling points are shown as magenta spheres.

Further points in this array delineate the outer (red points in

Figs. 4b, 4c) and inner surfaces (orange and yellow points) of

the protein shell. The positions of these additional points are

fixed by the scaling of the entire array to the spikes on the

protein capsid surface. No points occur within the volume of

the protein subunits. In other words, this array of points

describing one of the allowed forms of extended icosahedral

symmetry accurately maps both the major surface features and

the thickness of the PaV coat protein shell.

As a test of our procedure, we have inverted the procedure

in Fig. 3 and have ranked all 196 point arrays that have been

identified as potential candidates by the best-fit algorithm

solely according to their fit to the RNA cage in Pariacoto virus.

The best-fit array determined previously ranks 19th based on

RMSD alone, but if robustness against small deviations (the

prevalence score) is taken into account, it ranks first. This

suggests that this algorithm indeed identifies the point array in

the library that best captures its overall structure.

4.2. Bacteriophage MS2

To see if viruses other than PaV show evidence of extended

symmetry we applied the same matching algorithm to MS2

(Valegård et al., 1990), a bacteriophage infecting Escherichia

coli. The matching algorithm again returned a single best-fit

point array, scaling to the most radially distant features of the

MS2 capsid, namely a subset of the N-terminal �-hairpins of

the capsid proteins (see magenta points in Fig. 5a and

supplementary movie 4). Note, in this T ¼ 3 shell only the

hairpins on the B-type subunits are associated with array

points. These are at a slightly higher radius than the equivalent

structures on A- and C-type subunits. The best-fit array has

further points that mark the approximate positions of the

outer (red points) and inner surfaces (orange and yellow

points) of the protein shell (Fig. 5b). Interestingly, the orange

and yellow points locate the bottom surfaces of both types of

quasi-equivalent protein dimers (A/B and C/C, shown in blue/

green and pink, respectively) (Valegård et al., 1990) required

to form the T ¼ 3 surface lattice, even though they are at

different radial levels. As for PaV, the extended symmetry

point array correctly delimits the MS2 capsid. Both PaV and

MS2 are T ¼ 3 capsids and are equivalent as far as quasi-

equivalence theory is concerned, although we can distinguish
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Figure 3
An illustration of the procedure underlying the best-fit algorithm. Only
those points in each array in the library of 569 point arrays are used as
input that overlap with the capsid, here shown as a shaded ring structure.
Once the best-fit point array has been selected, its remaining points
overlapping with the capsid interior must also be descriptors of capsid
geometry. They therefore predict additional structural constraints. In our
case studies below we show that these predictions provide additional
insights into the genome packaging structure that agree well with
experimental data.



them by structure determination. The new geometric principle

described here shows that they are both distinct solutions for

particles having extended symmetry.

4.3. Genome organization is also predictable

Points in the best-fit array for PaV overlapping with the

volume occupied by the RNA genome (see Fig. 4b and also

supplementary movie 3) provide predictions on genome

organization. Strikingly, the mid-blue points at a radius

of 92 Å are located in the minor grooves of the A-type

duplex RNA, and green points at a radius of 114 Å mark the

positions of the threefold junctions (see their locations in

relation to a portion of the dodecahedral RNA cage in Fig.

4c). This is a remarkable result since the scaling of the

entire point array was to a feature on the outer surface of

the protein capsid. More significant than the placement of

individual points adjacent to the

genomic RNA is the fact that they

define a set of five intersecting lines

about each pair of three-way junctions,

albeit with the lines defined by just

two array points (Figs. 4d, 4e). These

lines are parallel to the helical axes

of the modelled genomic RNA,

implying that the virus has evolved

to maximize its symmetry in three

dimensions. This result could only occur

if there is an intrinsic geometric

relationship between the shapes and

structures of the coat protein layer and

of the packaged genome, suggesting a

completely new concept in virus

biology. The obvious conclusion is that

viruses show evidence of extended

icosahedral symmetry.

Very similar results were obtained by

applying the same analysis to the RNA

bacteriophage MS2 (see Figs. 5c, 5d).

The high-resolution X-ray structure of

the MS2 virion, like many ssRNA

viruses, does not show any density that

can be ascribed to the viral RNA

(Valegård et al., 1990). However, an

icosahedrally averaged cryo-EM struc-

ture at intermediate (�9 Å) resolution

reveals a double shell of RNA packaged

with approximate order (Toropova et al.,

2008). Strikingly, once again, array

points overlapping with the volume

occupied by the RNA map around the

contours of this RNA density (Figs. 5c,

5d). Again, the positions of these points

were fixed by scaling to the outside of

the protein shell. In MS2, we have

shown that the contacts between the

genome and the coat proteins in the

shell play significant roles in virus assembly (Basnak et

al., 2010; Dykeman & Sankey, 2010; Stockley et al.,

2007; Dykeman et al., 2011; Morton et al., 2010; Rolfsson

et al., 2010; Toropova et al., 2011). We have argued that

multiple RNA stem-loop coat protein dimer interactions

are required to determine the positions of the A/B

quasi-equivalent dimers in the final capsid. The locations

of these interactions have been determined using a

defined, high-affinity stem-loop, the translational repressor

TR (that is, the stem-loop formed by the sequence

50-ACAUGAGGAUUACCCAUGU-30), which has allowed

determination of X-ray structures for this complex in the

context of the capsid (Valegård et al., 1990, 1997). Fig. 5(d)

shows that the array points map neatly to the bound RNA

fragments at the different quasi-equivalent locations in the

T ¼ 3 shell, suggesting that the intrinsic scaling implied by the

PaV result also applies to MS2.
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Figure 4
Structural constraints encode protein topography and genome organization in PaV. (a) The capsid
of PaV is organized according to icosahedral symmetry as illustrated by its match to the
superimposed icosahedron (red). The magenta points are additional constraints encoded by our
theory and correspond to the outermost points of the best-fit array. They match to the tops of the
trimeric protein spikes, which is striking given that these are not located on axes of icosahedral
symmetry. (b) A cross-sectional view (52 Å thick) of the capsid, showing the locations of the best-fit
array points relative to the protein container and its closely associated dsRNA cage (light yellow).
(c)–(e) Close-ups of the two trimers bounded by the green rhomb in (a) together with an associated
portion of the dodecahedral RNA cage viewed from (c) outside the particle, (d) the side and (e)
inside the particle. The point array encodes constraints on the trimeric protein complex (orange and
yellow points) and the relative sizes of the capsid and RNA cage. Strikingly, (predictive) green
points map on the three-way junctions of this cage, and (predictive) blue points fit snugly into the
minor grooves of the A-type RNA duplexes. Since the locations of all points are fixed by extended
symmetry with respect to the outermost array points (magenta), this implies that protein
topography and RNA organization are correlated by a geometric scaling principle that is encoded
by extended icosahedral symmetry. For clarity, array points are shown here and throughout as
spheres of 4.5 Å radius, colour coded by their radial positions. Note, the PaV crystal structure is the
result of icosahedral symmetry averaging. This procedure does not assume any interdependence of
molecules at different radial levels and does not alter the conclusions from the matching to the array
described above.



A comparison of the PaV and MS2 results shows that, even

though these viruses are both T ¼ 3 structures, they are

represented by different elements in the library of point

arrays. Consequently, our algorithm implies different predic-

tions for the genome organization inside their capsids.

4.4. Application to a non-quasi-equivalent virus

As much as being able to provide additional information

for the quasi-equivalent cases in Caspar–Klug theory, our

approach complements viral tiling theory. The polyomaviridae

include cancer-causing viruses in humans and have non-quasi-

equivalent capsids, i.e. capsids built entirely from pentamers,

rather than the mixture of pentamers and hexamers of a capsid

built according to the rules of quasi-equivalence, and their

surface structures therefore follow viral tiling theory

(Twarock, 2004). Simian virus 40 (SV40) (Liddington et al.,

1991) is an example of such non-quasi-equivalent capsid

architecture (see Fig. 6a). Its capsid is composed of 72 coat

protein pentamers. This deviation from the standard pattern is

possible because the coat proteins in the pentamers exhibit

two distinct types of bonding interactions with proteins in
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Figure 5
The structural constraints predict a two-shell genome organization in
bacteriophage MS2. (a) The outermost points of the best-fit array scale to
the N-terminal �-hairpins of the capsid proteins in MS2 (magenta). (b),
(c) Central sections through the particle; (b) illustrates the match to the
crystal structure in surface representation (Valegård et al., 1990), with TR
stem-loops shown in yellow. As can be seen in the close-up in (d), array
points are located at the contact points between stem-loops and protein.
This is even more striking given that yellow and orange points are
predicted to be located at different radial levels, corresponding to the
contacts with the two different types of dimeric building blocks (A/B and
C/C) of the capsid. (c) An illustration of the match with the cryo-EM
RNA density (Toropova et al., 2008), shown here as a radially coloured
transparent surface. Array points map the inside (maroon points, radius
of 38 Å) and outside (blue and mid-blue points, 62 and 65 Å,
respectively) surfaces of the inner RNA shell, and also mark the density
connecting the inner and outer RNA shells (cyan, 75 Å). Strikingly,
magenta and maroon points together define the spatial extent of material
in this particle.

Figure 6
Non-quasi-equivalent configurations can also be predicted. The viral
capsid of SV40 contains 360 identical coat protein subunits arranged as 72
pentamers, an example of a non-quasi-equivalent capsid organization. (a)
The outermost constraints (magenta) are grouped around the 12 clusters
of five proteins (pentamers) at the particle fivefold axes of icosahedral
symmetry. (b) Cross-sectional view of the capsid, showing the locations of
points in the array relative to protein. (c)–(g) Ribbon representations of
the two different types of pentamers in the capsid; (c), (d) top and side
view of the 12 pentamers at the fivefold axes, viewed from outside the
capsid; (e), (f) show the corresponding views for the 60 pentamers off the
symmetry axes; (g) shows both pentamer environments simultaneously as
situated in the capsid. The new geometric principle of virus architecture
distinguishes between the two types of pentamer environments and
incorporates this viral geometry that cannot be modelled in quasi-
equivalence theory.



neighbouring pentamers defined by differing conformations of

their extended C-terminal arms. We used SV40 to see if our

extended-symmetry approach would also shed light on such

non-quasi-equivalent structures.

The matching algorithm again unambiguously identified a

single member of the library of point arrays for SV40, which

scales to the outer surface of the protein capsid (magenta

points in Figs. 6a–6g). This array also has points located on the

inner surface (green points in Figs. 6b–6g and supplementary

movie 5), i.e. the array of points matches the protein topo-

graphy and defines the capsid thickness, as for the other test

viruses. Further points overlap with the volume occupied by

the genome, although there are no structural data for this

component in this case (Fig. 6b). The distribution of array

points differs for the two types of pentamers. Strikingly, a

subset of the points discriminates the positions of the two

different types of C-terminal arm conformation (Figs. 6c–6g).

In other words, SV40 follows the predictions of extended

symmetry, i.e. it is not an anomaly. This resolves a long-

standing structural puzzle in virology.

4.5. Application to a wide range of viruses

The test cases in xx4.1–4.4 demonstrate that the library of

point arrays can distinguish between two T ¼ 3 viruses and

also applies to a non-quasi-equivalent case, a T ¼ 7 virus. In

order to demonstrate that the new approach can also account

for other virus structures, we have performed the analysis for a

wide range of viruses (see Table 2). We used hepatitis B virus

(PDB id 1qgt) shown in Figs. 7(a) and 7(b), which also exhibits

a cage structure in its packaged genome (Wynne et al., 1999),

to demonstrate that the library of point arrays also applies to a

T ¼ 4 structure. STMV (satellite tobacco mosaic virus) has

been used as an example of a T ¼ 1 virus, and our results are

in good agreement with the RNA fragments represented in its

PDB file (PDB id 1a34; Larson et al., 1998). We have shown

that bacteriophage GA (PDB id 1gav; Tars et al., 1997), which

is in a different group in the same family as MS2, has the same

best-fit point array, showing that the structures of two evolu-

tionarily related viruses are represented by the same point

array in our classification.

Moreover, the point arrays determined as the best fit for

tomato bushy stunt virus (TBSV) (PDB id 2tbv) (Hopper et

al., 1984; Olson et al., 1983; Hogle et al., 1983) show that the

two-domain architecture of its capsid protein is reflected in the

array (Figs. 7c, 7d). Different features in the genome organi-

zation, such as the polymorphic organization of the Seneca

Valley genome, are also accounted for by best-fit point arrays.

Finally, we interrogated the capsid structure of CCMV

(cowpea chlorotic mottle virus) before (Speir et al., 1995) and

after (Tama & Brooks, 2002; Liu et al., 2003) expansion. Best-

fit point arrays provided coarse-grained models that were used

to determine features of the structural transition via a lattice

approach (Indelicato, Keef et al., 2012).

5. Discussion

The majority of viruses use icosahedral symmetry to build

their capsids because of genetic economy. A container built

from multiple copies of a single coat protein subunit has

the largest volume if organized according to icosahedral

symmetry. This concept is the same as the reason why bees

build hives with hexagonal lattices minimizing the amount of

wax needed, and intersecting soap bubbles minimize their

surface areas. If viral subunits can adopt multiple, quasi-

equivalent conformations then much larger capsids, able to

package even larger genomes, can be constructed from this

single gene product, and the vast majority of known capsids

are of this form. They are currently classified in terms of their

T-numbers (Caspar & Klug, 1962), which can be very large for

large viruses and imply that capsids are built from 60T copies

of a coat protein subunit. The T-number predicts the locations

of the coat proteins in the capsid relative to a tessellation of

the surface of a sphere that encodes the structural organiza-

tion of the capsid. Although coat protein subunits are three-

dimensional objects, their locations in quasi-equivalence

theory are described in terms of a two-dimensional surface. In

this study, we have applied the mathematics of extended

symmetry to virus structures and generated results that go

beyond quasi-equivalence into three dimensions. Unlike

quasi-equivalence, our theory can distinguish between the

architectures of different viruses with the same T-number and,

strikingly, predicts aspects of coat protein and genome topo-

graphy. It also incorporates into a single scheme previously

anomalous virus architectures. Our results imply that all parts
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Figure 7
(a) The best-fit point array for hepatitis B viewed down a fivefold axis and
(b) overlaid on the cryo-EM data of the genomic material, adapted from
Wynne et al. (1999). (c) The best-fit point array for TBSV viewed down a
fivefold axis and (d) overlaid on neutron scattering data, adapted from
Hopper et al. (1984), Olson et al. (1983) and Hogle et al. (1983).



of a virus are structurally related via geometric constraints

that are an implicit property of the symmetry of its capsid.

Viruses are therefore even more strongly constrained by

symmetry than previously realised.

An obvious question is: why is this the case? Zandi et al.

(2004) have shown that viral protein containers organized

according to the principle of quasi-equivalence correspond to

local minima in an energy landscape. By analogy, perhaps

entire viral particles organized according to extended

symmetry also represent such local free-energy minima, albeit

in a more complex energy landscape? The new principle of

extended symmetry would then help to explain the inherent

stability of viral particles, which is important between rounds

of infection. This would provide a plausible evolutionary

mechanism by which extended symmetry could be selected for

during viral evolution. At first glance this seems improbable

but the same type of interaction between evolution and the

constraints of three-dimensional geometry gave us bees that

understand how to make a hexagonal lattice and hence store

the most honey for the least amount of beeswax.

Extended symmetry has far-reaching implications for our

understanding of virus biology, because it reveals for the first

time the interdependence of the shapes and sizes of all viral

components. For example, virus particles commonly undergo

large conformational changes during maturation or infection.

The new geometric principles revealed by extended symmetry

must apply to all these metastable conformational states. The

structural transitions that occur during maturation and infec-

tion are therefore inherently predictable based on an X-ray or

cryo-EM structure of the native capsid (Indelicato, Cermelli

et al., 2012). These insights are extremely timely, as we are just

starting to understand the detailed molecular mechanisms that

underlie virus assembly (Basnak et al., 2010; Dykeman &

Sankey, 2010; Stockley et al., 2007; Dykeman et al., 2011;

Morton et al., 2010; Rolfsson et al., 2010; Toropova et al., 2011)

and exploit them. Potential applications include the creation

of targeted drug-delivery vehicles and imaging contrast agents

(Wu et al., 1995; Lewis et al., 2006), as well as the use of viruses

and virus-like particles for vaccine development (Jagu et al.,

2010).

Viral coat proteins are striking in their levels of topo-

graphical conservation despite very low levels of primary

sequence identity. This is usually ascribed to the existence of a

common ancestor, i.e. to a divergent evolutionary process

(Bamford et al., 2005). Since evolution acts at the level of the

phenotype, the implication is that only very few protein folds

can accommodate the requirements of viral coat protein

subunits. From quasi-equivalence these are relatively modest,

and include an ability to assemble into an icosahedral surface

lattice and be flexible enough to create quasi-conformers, as

well as producing viable virions. Many other multi-protein

complexes are known whose proteins seem able to fulfil many

of these criteria, leaving a puzzle. Our results suggest an

alternative explanation for viral protein folds based on the

competitive advantage of virion stability implied by highly

symmetric capsids in three dimensions. Even if such a

phenotype conferred a minimal advantage compared to the

bulk population, the trait of favouring extended capsid

symmetry would rapidly become fixed in a viral population.

This additional constraint would dramatically reduce the

numbers of protein folds capable of achieving maximal

stability, partially explaining the observed level of conserva-

tion. The approach presented here provides a tool for the

prediction of the structural constraints that a virus organized

with highest symmetry should obey. This does not completely

constrain its structure, but rather provides important insights

into those structural features having the highest level of

symmetry and which are therefore less likely to change in an

evolutionary cycle. As we have demonstrated with this

analysis, the best-fit point arrays of MS2 and the evolutionarily

related GA are identical. Since the outermost points in the

best-fit array map around the immuno-dominant epitopes,

usually the most radially distant features of a virus, this has

implications for features that are preserved when viruses

mutate. An appreciation of extended symmetry will therefore

underpin our attempts to develop new therapies, e.g. by

development of vaccines and agents that target viral assembly.

This includes those oncogenic viruses, such as the human

papillomaviruses discussed here, that underlie cervical

cancers, the structures of which have not previously been

explained by quasi-equivalence theory alone (Jagu et al.,

2010).
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